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Abstract
Microbes are being engineered for an increasingly large and diverse set of applications.

However, the designing of microbial genomes remains challenging due to the general complexity

of biological system. Adaptive Laboratory Evolution (ALE) leverages nature’s problem-solving

processes to generate optimized genotypes currently inaccessible to rational methods. The

large amount of public ALE data now represents a new opportunity for data-driven strain design.

This study presents a novel and first of its kind meta-analysis workflow to derive data-driven

strain designs from aggregate ALE mutational data using rich mutation annotations, statistical

and structural biology methods. The mutational dataset consolidated and utilized in this study

contained 63 Escherichia coli K-12 MG1655 based ALE experiments, described by 93 unique

environmental conditions, 357 independent evolutions, and 13,957 observed mutations.

High-level trends across the entire dataset were established and revealed that ALE-derived

strain designs will largely be gene-centric, as opposed to non-coding, and a relatively small

number of variants (approx. 4) can significantly alter cellular states and provide benefits which

range from an increase in fitness to a complete necessity for survival. Three novel

experimentally validated designs relevant to metabolic engineering applications are presented

as use cases for the workflow. Specifically, these designs increased growth rates with glycerol

as a carbon source through a point mutation to glpK and a truncation to cyaA or increased

tolerance to toxic levels of isobutyric acid through a pykF truncation. These results demonstrate

how strain designs can be extracted from aggregated ALE data to enhance strain design efforts.
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1 Introduction
The ability to precisely engineer microbial strains continues to improve. Multiple fields have

emerged to take advantage of recent advances in biomolecular methods and technologies1.

However, an incomplete understanding of biology renders the rational design of microbial strains

challenging2. Introducing rationally designed changes into the DNA of a cellular chassis often

leads to a perturbed suboptimal metabolic or regulatory state, resulting in the underachievement

of goals3 and the need for a prolonged engineering effort that can require up to 6–8 years and

over $50 million in costs2.

The opportunity exists to leverage the built-in problem-solving processes of adaptive

evolution to discover and elucidate biological functions and generate solutions for applications.

Adaptive Laboratory Evolution (ALE) is the formalization of a controlled evolutionary process

that can successfully be applied to understand and engineer bacterial strains. ALE can provide
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adaptive mutations to optimize a strain’s growth rate or related fitness properties useful for both

microbial engineering research and applications4. When a production pathway (e.g., metabolic)

can be coupled with growth, ALE can provide adaptive mutations that will increase the

throughput of this pathway5,6. Furthermore, if a strain’s fitness has been severely disrupted by a

designed change, ALE can identify mutations that rebalance the cell’s homeostasis4,7–11. ALE

can additionally serve to harden strains against industrial conditions3,4,12,13 and improve their

utilization of secondary or non-native substrates4,14–19.

Due to ALE’s potential for discovery and application4, almost 700 manuscripts and over

18,000 experimental evolutions have been published20. The growth in ALE data has inspired

multiple efforts towards its consolidation and analysis20–23. Aggregating public data is expected

to enable new discoveries not evident through single experiments24. Critical biomedical efforts,

such as cancer and antimicrobial resistance research, have benefited from the meta-analysis of

big data sets describing their respective fields25–27. Previous work has datamined public ALE

data, though their results were limited to genetic loci and therefore didn’t explore the specific

mutational sequence changes21. Nucleotide-level resolution is ideal for strain design and the

aggregation of ALE mutation sequence changes could reveal the specific types of changes

adaptive evolution selects across defined genomic features and experimental conditions. These

ALE-derived design principles could inform strain design efforts28. Thus, one could initiate a

design based on an ALE mutation or evolved strain that best represents an apparent mutation

trend from aggregated mutational data. One could further strive to understand ALE mutation

trends well enough to propose novel sequence changes that would accomplish the same fitness

benefit, demonstrating the possibility to extract strain design principles from ALE data.

This study seeks to design novel strain variants with potential for applications by using

rich mutation annotations and structural biology methods on a consolidated ALE dataset of

mutations and their experimental conditions. Aggregated ALE mutational and experimental

conditions data was leveraged from ALEdb, a web-based platform reporting on experimental

evolution mutations and their conditions22. The combination of rich annotations and aggregated

ALE data enables mutated systems to be associated with experimental conditions to aid in

deconvoluting mutation selection pressures23. Structural biology methods and functional

annotations helped reveal the protein properties being targeted by ALE mutations. These

analyses enable the interpretation of ALE mutation objectives for specific conditions of interest,

which were leveraged to design and build novel variants of similar benefit to the ALE mutations.

This work’s results demonstrate how to leverage existing aggregated ALE data and biological

knowledge in microbial strain design and form a basis for similar applications in biomedical or

basic discovery efforts.

2 Results

2.1 A workflow leveraging mutation trends in consolidated ALE data to design variants
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Figure 1: A general workflow to derive strain designs from aggregated ALE mutations and

experimental conditions.

A generalized workflow was developed to derive variant designs using aggregated ALE data

(Figure 1). The following describes the workflow’s overall general steps and specific sections are

referenced for each step to provide specific details:

1. Select conditions of interest. This step is often dictated by the desired application and is

informed by known biological mechanisms associated with the desired phenotype. The

conditions available for investigation come from the metadata for ALE experiments which

describe the experimental conditions (section 2.2). This study used ALEdb (7) as its

source for ALE mutational data and experimental conditions. As an aggregated ALE

dataset’s diversity increases, the queryable cases will also increase. In this work, growth

on glycerol as a carbon source (section 2.3.1) and toxic concentrations of isobutyric acid

(section 2.3.2) were targeted as relevant bioprocessing phenotypes29–33; there remains

many other selection pressures in the dataset used.

2. Extract all mutated features associated with conditions of interest. Mutated genomic

features and their experimental conditions are extracted from an aggregated and curated

dataset to seed the analysis. Statistically significant associations are established

between mutated features and conditions to aid in deconvoluting the selection pressures

for mutated features. It is important to note that the scale of association analyses used to

link mutated features to conditions depends on the amount and variety of annotated

genomic features in a data set. Extending mutation annotations beyond the standard
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types included in genome references (genes and intergenic regions) improves the variety

of mutated systems that may be associated with conditions of interest (section 2.2)23.

3. Rank-order the features of interest and identify relationships between them. Rank-order

mutated features of interest by mutation frequency and strength of association to

condition of interest (sections 2.3.1.1 and 2.3.2.1). Relationships between mutated

features should also be considered (e.g., in the case of synergistic or antagonistic

epistasis) and can help avoid potential incompatible sequence changes and provide

insights into the systemic changes that result from multiple mutations (sections 2.3.1.1

and 2.3.2.1).

4. Choose representative mutations using trends on highly-ranked features of interest.

Identify mutation trends on highly-ranked features of interest (sections 2.3.1.2, 2.3.1.5,

and 2.3.2.2) and select representative mutations to establish initial ALE variant designs

(sections 2.3.1.3, 2.3.1.7, and 2.3.2.3). Trends can be identified through mutation

clustering on targets and can be informed using structural biology and mutation effect

prediction methods.

5. Propose novel sequence changes. Interpret the ALE mutation trend’s objectives and

propose a novel sequence change that would potentially accomplish the same fitness

benefit as the representative ALE mutation. Interpretations can be informed using

structural biology and mutation effect prediction methods, among others (sections

2.3.1.3, 2.3.1.8, and 2.3.2.3).

6. Experimentally validate novel sequence changes. Perform an assay to experimentally

validate that the novel sequence changes are beneficial relative to wild-type and have

similar fitness to ALE mutations (sections 2.3.1.4, 2.3.1.8, 2.3.2.4).

2.2 Meta-analysis trends suggest types of designs to expect from ALE data

Figure 2: The dimensions and properties of the mutational data set used in this study. (a) A plot

of the different dimensions of the ALE data used within this study as extracted from ALEdb. (b)
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A visual representation of the different condition types across ALEs in the targeted set. The

mapping between individual colors and labels can be found in Supp. Fig 1-9.

This study specifically used ALE mutations and metadata from ALEdb, a database for

experimental evolution mutation data22, and an enriched set of mutation annotations generated

by a multiscale annotation method23. The dataset contained 63 Escherichia coli K-12 MG1655

based ALE experiments from ALEdb, totaling 357 independent evolutions, 13,957 observed

mutations (Figure 2a). The observed mutations were filtered to exclude hypermutator strains,

mutations with frequencies below 0.5 from population sequencing samples (24% of the total

samples), and ALE-uniqueness, resulting in 3921 dominant ALE-unique mutations (Figure 2a).

Mutations were annotated with 10 different genomic feature types (gene, intergenic, promoter,

transcription factor binding site, ribosomal binding site, terminator, attenuator terminator, operon,

pathway, regulon) to enable the identification of mutation convergence on a broad set of

genomic features and biological functions23 (Figure 2a, Figure 3a). The dataset tracked 10

different condition types describing the strain and environment of ALE experiments with a total

of 93 unique conditions (Figure 2a). Meta-analysis of this consolidated dataset revealed trends

that predict the general shape of the workflow’s results and will be described in the following

sections.
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Figure 3: Mutation types and effects exhibit a bias towards specific genomic feature types. (a)

Table of mutation type and mutated feature frequencies. Synonymous SNPs are abbreviated as

“syn”, nonsynonymous SNPs are abbreviated as “non-syn”, and truncating mutations are

abbreviated as “trunc”. (b) The distribution of mutation sizes and amount of genomic features

affected according to mutation types. Abbreviations: SNP, single nucleotide polymorphism; DEL,

deletion; MOB, mobile insertion elements; INS, insertion; SUB, substitution; CNV, copy number

variant. (c) The proportion of mutations to individual features across feature types that are

truncations. (d) The number of sequence truncating and non-truncating mutations for individual

genomic features. Abbreviations: TFBS, transcription factor binding site; RBS, ribosomal binding

site.

ALE mutations come in a variety of types and can affect a variety of features encoded on

the genome. Six different types of mutations were found within the dataset (Figure 3a): single
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nucleotide polymorphisms (SNP), deletions (DEL), insertions (INS), mobile element insertions

(MOB), multi-nucleotide substitutions (SUB), and copy number variations (CNV). Different

mutation types manifest at different frequencies, resulting in different amounts for each mutation

type within this dataset (Figure 3a). The mutated feature annotations used in this study range

from small genomic features (e.g., terminators) to larger features (i.e., operons, regulons, and

pathways) describing biological function (Figure 3a). There is a clear trend in the frequency of

small mutated features: genes were most often mutated, with promoters hosting the most

mutations for non-coding features. Multi-nucleotide mutations or overlapping features can result

in more than one feature affected by a mutation, therefore more mutated features than mutations

can occur within an ALE experiment23 (Figure 3a, Figure 3b).

2.2.1 The majority of ALE mutations to noncoding regulatory features resulted in
truncations
Amino acid substitutions and some of the disruptive effects mutations can have on genomic

feature sequences can be confidently predicted. These predictions rely on mutation size (Figure

3b) or specific coding sequence changes. The effects of mutations on the translation of genes

were the most straightforward to predict, primarily by considering the effects mutations have on

the open reading frame. SNPs can result in synonymous or nonsynonymous codon changes,

where a nonsynonymous SNP can result in an amino acid substitution or a truncation due to the

introduction of a premature stop codon or the removal of a start codon. Truncations due to

structural variants (SV) can also be predicted. Open reading frames were expected to be

functionally truncated if the SV caused a frameshift. The effect of SV to non-coding regulatory

features of the genome were more difficult to predict, though it is likely safe to assume that SVs

of 10 nucleotides or more truncate both coding and non-coding features. SNPs were the most

frequent mutation type and the largest contributor to mutated features (Figure 3a). SNPs were

also most frequently found within genes and were most often predicted to result in a

non-synonymous amino acid substitution, though the majority of these didn’t result in

truncations (Figure 3a). Deletions were the most frequent SV and contribute a substantial

amount of the truncations to features (Figure 3a).

Different feature types display different mutation type and effect trends. All non-coding

feature types, besides intergenic regions, were more often targeted by truncations while genes

were equally targeted by truncating and non-truncating mutations (Figure 3c). This suggested

that non-coding features were more likely to be truncated than refined by ALE mutations.

Individual features are often mutated with both truncating and non-truncating mutations, though

there were features more often affected by one of the predicted mutation effects (Figure 3d).

The features affected by only non-truncating mutations may be benefiting from gain-of-function

mutations, which represent potential for variant designs involving something other than

truncations.
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2.2.2 Unique mutated features are correlated with only a small number of other mutated
features

Figure 4 ALE adapted genotypes are gene-centric and involve few mutated features per

condition. (a) A clustermap of the Pearson correlation coefficients for all genomic feature pairs

(656,085). (b) The distribution of cluster sizes from the clustering of all genomic feature pairs

according to their correlation. The median cluster size was 4, as highlighted. (c) The total

amount of statistically significant associations between unique features and conditions

according to feature types. (d) The amount of significantly associated conditions per unique

genomic feature.

Correlations between all mutated genomic features (gene, promoter, TFBS, intergenic,

attenuator terminator, terminator, RBS) across the entire set of mutations can be leveraged to

approximate coarse-grain relationships. Positively correlated genomic features should represent

features that can be mutated together to optimize a strain for one or more conditions, which may

constitute part of or the whole set of adaptive mutations from an ALE. Negative correlations

should represent features that result in neutral or negative effects on the strain’s fitness when

mutated together. The nature of selection for growth with ALE experiments results in more and

stronger positive correlations than negative correlations between mutated features

(Supplementary Figure 13, Figure 4a). Hierarchical clustering of correlated features results in a

distribution of cluster sizes with a median of six features (Figure 4a, Figure 4b), potentially

describing the general need for only six mutated features to achieve a system optimization

through ALE.
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2.2.3 Unique mutated features are associated with only a small number of conditions
The ALE conditions metadata enables efforts in linking mutated features to conditions, isolating

subsets of mutations from across experiments that may be related to conditions of interest.

There were 93 unique conditions across 10 different condition types (Figure 2b, Supplementary

Figures 1 through 9). Due to the variety of experiments consolidated in the data of this study,

some conditions will contain more potential for designs than others. The supplement,

starting-strain, and carbon-source conditions have substantially more associated features than

the other condition types (Supplementary Figure 11), likely reflecting the variety of conditions

(Figure 2b, Supplementary Figures 1 through 9). Operons and genes had the largest amount of

associated conditions (Figure 4c). This is likely due to operons being composed of genes, which

have the largest variety of uniquely mutated features in this dataset (Figure 3a). These

associations can also describe the specificity of the mutated features for the given conditions.

Most features across all types were associated with only a small set of conditions, though there

exist some outliers that were associated with a broad range of conditions and could therefore be

applicable to a broad range of stresses (Figure 4d). According to these trends, it was expected

that variants derived from these associations were going to be gene-centric and only involve a

small number of coding and non-coding features.

2.2.4 Aggregated ALE data reveals common low-frequency mutations targets across
multiple experiments
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Figure 5 Aggregated ALE data reveals common low-frequency mutation targets with potential

benefit to a broad set of conditions.

Some mutated features are more often selected across independent ALE replicates of individual

experiments and are described as having a measure of convergence23 (Figure 5,

Supplementary Figure 10). The phenomenon of convergence is leveraged in evolution

experiments to identify potentially beneficial mutations for given conditions. The degree of

convergence that mutated features exhibit in their respective experiments provides a measure of

selection strength for their mutation, suggesting an approximate degree of benefit for mutations.

Mutated features generally have low convergence (Supplementary Figure 10), though there

were some that demonstrate high convergence and therefore strong evidence of selection

(Figure 5, Supplementary Figure 10). Those mutated features with high convergence are

generally identified as hosting the most beneficial mutations within an ALE experiment. Some
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features mutated in many experiments were observed with low convergence and associated

conditions (Figure 5), suggesting that these mutations were secondary optimizations beneficial

to a broad set of conditions. These features may represent beneficial sequence changes that

are only identifiable through the aggregation of ALE experiment mutations. For example, the

nagBAC-umpH is mutated across 10 different ALE experiments in this dataset, though has an

average convergence of 0.36 (Figure 5). nagA and nagC, the most frequently mutated genes of

this operon, are involved in the recycling of cell wall peptidoglycan and may be introducing

broadly applicable beneficial changes. Mutations to the cell envelope are often seen in ALE

experiments and have been shown to be beneficial34.

2.3 Case studies of application to strain design
The meta-analysis results reveal many opportunities for variant designs with the aggregated

ALE dataset. The following sections describe case studies deriving three variant designs using

ALE data and the presented workflow (Figure 1). The case studies demonstrate specific

conditions that have a potential for application and have a large amount of samples or involve

genes frequently mutated in multiple experiments. The case studies also demonstrate designs

based on either truncating or non-truncating mutations to explore the potential for design of both

mutation types.

2.3.1 An E. coli K-12 MG1655 strain design for glycerol as a carbon source
The use of different carbon sources for bioproduction could prove to be an important strategy in

maintaining feedstock flexibility. Glycerol has been shown to serve as feedstock for the

production of valuable biochemicals, such as 1,3-PDO29, ethanol30, and limonene31.

Glycerol-associated ALE mutations23,35 thus represent an opportunity for an ALE-derived strain

design with possible valuable commercial applications and are targeted as a demonstrative case

study (Figure 1 workflow step 1).

2.3.1.1 Associations with conditions and analysis of multi-scale mutation annotations
outlines systems important for adaptation to glycerol as a carbon source
Within the dataset, 149 mutations had at least one of their host features significantly associated

with glycerol as a carbon source (Figure 1 workflow step 2, Supplementary Figure 14). The CRP

regulon hosts the most mutated features for ALEs using glycerol as a carbon source

(Supplementary Table 3), is associated with this selection pressure, and is one of the most

frequently mutated regulons across this dataset’s ALE experiments (Figure 1 workflow step 2

and 3.1, Figure 5, Supplementary Figure 16). The CRP regulon describes many operons that

encode for catabolic functions, including secondary carbon source metabolism. The CRP

regulon is statistically associated with six different conditions, three of which were secondary

carbon sources (Supplementary Figure 16). The three most frequently mutated operons

associated with glycerol as a carbon source and linked to CRP were glpFKX, cyaA, and
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ptsHI-crr (Supplementary Table 2, Supplementary Figure 15, Supplementary Figure 16). The

genes glpK, cyaA, and crr were the most frequently mutated features of their operons

(Supplementary Figure 15, Figure 6a). Mutations to the CRP regulon, glpFKX operon, and glpK

were strongly selected for (Figure 5) and glpFKX mutations were strongly associated with

conditions involving glycerol and a temperature of 30 Celcius (Supplementary Table 1,

Supplementary Figure 16). While the cyaA and ptsHI-crr operons and the cyaA and crr genes

were less strongly selected for by their ALE experiments, they were still seen mutated in multiple

ALE experiments (Figure 5) and were associated with a partially overlapping set of conditions

(Supplementary Figure 16). Multiple strong associations to ALE conditions suggest the potential

that mutations to these features could be beneficial for a broad set of stresses. Mutations to

glpK and cyaA or glpK and crr were found in the same samples, though mutations to crr and

cyaA were not (Figure 6a). This, along with correlations between the mutated genomic features

associated with glycerol as a carbon source (Supplementary Figure 29), suggest that mutations

to crr and cyaA have a negative epistatic relationship23 (Figure 1 workflow step 3.2).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.452699doi: bioRxiv preprint 

https://paperpile.com/c/ybYhxs/Y9eVO
https://doi.org/10.1101/2021.07.19.452699
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6 The clustering of truncating or non-truncating mutations reveal variant designs for

glycerol as a carbon source. (a) An oncoplot demonstrating the types of mutations to genomic
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features on operons of interest (operons cyaA, glpFKX, and ptsHI-crr) and the conditions for the

ALE samples hosting these mutations. (b) A mutation needle plot for mutated amino acids

across GlpK’s amino acid chain. (c) GlpK’s 3D structure and mutated residues from mutations.

The residue chain and transparent surfaces are colored according to the legend of the

corresponding mutation needle plot. Mutations are represented by a small opaque sphere with a

value representing their amino acid position on the corresponding mutation needle plot. The

color of the mutation’s sphere corresponds to the mutation’s predicted effect as described by the

legend on the corresponding mutation need plot. The transparent sphere centered on the

mutations’ opaque sphere represents the number of mutations with a specific predicted effect on

that position. The angle shown illustrates how all the GlpK-GlpK interface surfaces are oriented

on the same side of the 3D structure along with the clustering of mutations on or near these

surfaces. (d) A mutation needle plot for mutated amino acids across CyaA’s amino acid chain.

(e) The accumulation of the truncated amino acids downstream of truncating mutation from the

mutation needle plot. (f) CyaA’s protein structure and mutated residues from non-truncating

mutations. (g) The growth rates of the mutants harboring ALE mutations and designed variants

for GlpK in the selection pressure of glycerol as a carbon source. (h) The growth rates of the

mutants harboring ALE mutations and designed variants for CyaA in the selection pressure of

glycerol as a carbon source. (i) The growth rates of the mutants harboring ALE mutations and

designed variants for CyaA in the selection pressure of Δpgi.

2.3.1.2 ALE mutation trends in glpK, cyaA, and crr
Among glpK, cyaA, and crr, glpK was the most frequently mutated (Figure 1 workflow step 3.1).

Further, it was observed to mutate in ALE experiments that involve substrate switching between

glucose and glycerol (Figure 6a); all ALE experiment mutations to glpK were investigated to

understand if mutation types clustered within the gene according to conditions. All mutations to

glpK were SNPs and frequently landed in codons for amino acids involved in GlpK’s subunit

interface (Figure 6b, Figure 1 workflow step 4), where GlpK can form both a dimer and tetramer.

The subunit interface amino acids are spread across GlpK’s sequence (Figure 6b), though in the

3D structure model their residue surfaces all group together to face the same direction (Figure

6c), revealing further clustering of mutations specific to 3D space. Finding the distances

between mutated residues and GlpK features according to their 3D positions on GlpK’s structure

provided for a potentially more accurate measure of nearness between mutations and features.

GlpK subunit interfaces continue to be nearest to or directly host the most SNPs

(Supplementary Figure 17), though the mutations to the GlpK subunit binding sites have the

highest proportion of mutations with a predicted effect (Supplementary Figure 18). Four out of

five of the SNPs to the GlpK subunit binding sites were accomplished through the same

nucleotide substitution S59Y (TCC→TAC) and was predicted deleterious via a SIFT score <

0.05.

cyaA was the second most frequently mutated gene of those associated with glycerol

and its mutations were often found in samples with mutations to glpK (Figure 6a). cyaA was
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mutated in multiple experiments of different conditions (Figure 6a); all ALE experiment mutations

to cyaA were investigated to understand if mutation types clustered within the gene according to

conditions. Mutations from multiple experiments cluster near the middle of the amino acid

sequence (Figure 6d, Figure 1 workflow step 4). Many of the mutations within this cluster cause

a frameshift or truncation, thereby disrupting the downstream coding sequence. The

accumulation of truncated amino acids demonstrated that the regulatory region was often

targeted for disruption across varying ALE stressors, including that of glycerol as a carbon

source (Figure 6e). Observing the mutated residues on CyaA’s structure from mutations other

than truncations, there was no novel 3D clustering of mutated residues not already apparent

with the linear analysis (Figure 6f). The clustering of mutations from multiple ALE experiments

with various selection pressures suggests that a specific change to cyaA may have broad

applicability.

crr was the third most frequently mutated gene of those associated with glycerol (Figure

6a) and its mutations were often found in samples with mutations to glpK and never found in

samples with mutations to cyaA (Figure 6a, Figure 1 workflow step 3.2). The absence of

mutated cyaA and crr genes in the same sample has been hypothesized to be due to their

mutations having similar effects to the same system in the case of ALEs with a glycerol carbon

source23. crr was mutated in multiple experiments of different conditions (Figure 6a); all ALE

experiment mutations to crr were investigated to understand if mutation types clustered within

the gene according to selection pressure. Most mutations to crr’s amino-acid sequence fall on or

near interfaces (Figure 1 workflow step 4). These interfaces describe separate surfaces of Crr’s

structure36 (Supplementary Figure 21). Finding the distances between mutated residues and Crr

features according to their 3D positions on Crr’s structure36 provided for a potentially more

accurate measure of nearness between mutations and features. Crr feature residues truncated

by an upstream coding disruption were additionally included. The Crr-Crr interface hosts the

most mutated residues (Supplementary Figure 22), though its mutation type differs from those

mutated residues to all other features (Supplementary Figure 23). Mutations to the Crr-Crr

interface were also specific to Δpgi ALEs while mutations to all other features were specific to

glycerol carbon source ALEs (Supplementary Figure 20). Mutations from glycerol carbon source

ALEs additionally cluster near each other on or near the same surface of the 3D structure

(Supplementary Figure 21). This surface hosts the GlpK, PtsG, PtsH, PtsI, and FrsA interfaces

as well as binding and active sites. All but one mutation clustering near these multi-interface

residues were predicted to be disruptive (Supplementary Figure 20).

2.3.1.3 glpK and cyaA novel variant designs
The S59Y (TCC→TAC) substitution was chosen as the representative ALE mutation for glpK

due to its high frequency and specificity of effect on an active site (Figure 1 workflow step 4).

Across all possible amino acid substitutions for glpK S59, the tyrosine substitution (Y) was very

highly ranked according to SIFT scores, size, and flexibility difference relative to wild-type

residues (Supplementary Figure 19). The residue substitution of tryptophan (W) scored higher
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or similar to the tyrosine ALE-derived substitution in the previously mentioned categories, as

well as being categorized as having a bulky aromatic sidechain (Supplementary Figure 19b),

thus making it a good candidate for a derived design. A substitution of tryptophan at this position

has already been characterized to eliminate inhibition of GlpK’s catalytic activity37. Since the

tryptophan substitution had already been characterized, another novel substitution was pursued

for the purposes of this study. Phenylalanine (F) was the only other residue that is both

characterized as being bulky and having an aromatic sidechain as well as scoring similarly to

tyrosine and tryptophan substitutions; therefore, the final proposed design for GlpK was that of

S59F (Figure 1 workflow step 5).

Mutations to cyaA have a more interpretable effect on the gene than those to Crr: the

truncation of CyaA’s regulatory region. The 5 BP deletion starting within amino acid 455 in cyaA

was chosen as the representative ALE mutation for those of CyaA and Crr (Figure 1 workflow

step 4). This mutation was selected due to being mutated in two separate ALE replicates along

with being an easily reintroducible mutation type. To truncate the regulatory region with more

accuracy, CyaA’s variant design inserted 3 stop codons at amino acid 540, immediately

upstream of the regulatory region (Figure 1 workflow step 5).

2.3.1.4 Experimental validation of glpK and cyaA novel variant designs
To examine the fitness changes from glpK and cyaA mutants relative to wild-type with glycerol

as a carbon source, growth screens were performed on reconstructed strains harboring the ALE

mutations with the designed variants. The results show that the ALE-derived mutants and

designs have similar growth rates along with higher growth rates than wild-type (Figure 6g,

Figure 6h, Figure 1 workflow step 6).

To test the potential applicability of ALE-data-driven-designs with multiple different

stresses, the cyaA mutants and design were additionally tested in the background of a Δpgi

strain. Some of the cyaA ALE mutations that clustered in the center of the gene were selected

for by a Δpgi ALE experiment (Figure 6d). The growth screen results demonstrated that the

mutants and designs have similar growth rates along with higher growth rates than wild-type

(Figure 6i). These results also show that a partial truncation to cyaA granted a higher fitness

than a full truncation (Figure 6i, Figure 1 workflow step 6), which differs from the glycerol

carbon-source stressor growth screen, where partial and full truncations had similar fitness.

2.3.2 An E. coli K-12 MG1655 strain design for high concentrations of isobutyric acid
Tolerance is a key phenotype for microbial cell factories. Industrial requirements can have

strains exposed to or produce toxic concentrations of substrates or products. Genotypes that

provide any improved tolerance to detrimental conditions can be valuable in that their tolerance

can translate to higher concentrations of product, especially with large scale operations32.

isobutyric acid is a biochemical with a market size of 100,000 tons in 201133 and can be

produced with an engineered E. coli strain32. isobutyric acid associated ALE mutations32
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represent an opportunity for an ALE-derived strain design with possible applications (Figure 1

workflow step 1).

Figure 7 The clustering of truncating mutations reveals a variant design for toxic concentrations

of isobutyric acid. (a) An oncoplot demonstrating mutations linked to the pykF operon across all

ALE experiments of this study’s data. (b) A mutation needle plot for mutated amino acids across

PykF’s amino acid chain. (c) PykF’s 3D structure and mutated residues. No truncating mutations

are included. The residue chain and transparent surfaces are colored according to the legend of

the corresponding mutation needle plot. Mutations are represented by a small opaque sphere
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with a value representing their amino acid position on the corresponding mutation needle plot.

The color of the mutation’s sphere corresponds to the mutation’s predicted effect as described

by the legend on the corresponding mutation need plot. The transparent sphere centered on the

mutation's opaque sphere represents the number of mutations with a specific predicted effect on

that position. The angle shown illustrates how most of the mutations cluster in 3D space around

the area which hosts most of the catalytic domains. (d) The accumulation of the truncated amino

acids downstream of truncating mutations from mutation needle plot. (e) The growth rates of

WT, a ΔpykF strain, the pykF ALE mutant, and the pykF designed variant with toxic

concentration of isobutyric acid (12.5 g/L). A ΔpykF mutant was used to investigate for any

difference between the strains that partially truncate pykF and its full truncation. (f) The growth

rates of WT, a ΔpykF strain, the pykF ALE mutant, and the pykF designed variant with glucose

as a carbon source. A ΔpykF mutant was used to investigate for any difference between the

strains that partially truncate pykF and its full truncation.

2.3.2.1 Associations with conditions and analysis of multi-scale mutation annotations
outlines systems important for adaptation to isobutyric acid tolerance
Within the dataset, 79 mutations had at least one of their host features significantly associated

with the condition of toxic isobutyric acid concentrations (Supplementary Figure 24, Figure 1

workflow step 2). The purine metabolism pathway hosts the most mutations (Supplementary

Table 6), with the majority of the mutations coming from the pykF and rplKAJL-rpoBC operons

(Supplementary Figure 25, Supplementary Table 5, Figure 1 workflow step 3.1). Of these two,

the pykF operon is strongly associated with toxic isobutyric acid concentrations (Supplementary

Figure 28). The purine metabolic pathway, rplKAJL-rpoBC operon, pykF operon, and pykF were

frequently mutated features across this dataset’s ALE experiments (Figure 5). The purine

metabolic pathway and rplKAJL-rpoBC operon were strongly selected for in ALE experiments,

while mutations to pykF and its operon were less so, on average (Figure 5). pykF and its operon

were also more specific in their associations to conditions, where the rplKAJL-rpoBC operon

and purine metabolic pathway mutation associations were more broad (Figure 5, Supplementary

Figure 28). Correlations between frequently mutated genomic features demonstrate pykF and

rpoB as positively correlated (Supplementary Table 4, Supplementary Figure 30). The positive

correlation between pykF and rpoB along with their differing associations indicate that these

compatible mutations were adapting for different selection pressures (Figure 1 workflow step

3.2).

2.3.2.2 ALE mutation trends in pykF
The pykF operon is frequently mutated across this study’s many ALE experiments. These

mutations were gathered and investigated to understand if mutations clustered according to ALE

experiment conditions. Most of these mutations target pykF’s coding sequence, with some to the

operon’s non-coding features (Figure 7a). A mutation to the pykF operon’s non-coding features

seems to preclude a mutation to any of the others, suggesting that they have related effects on
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the host strain (Figure 7a). Mutations to pykF were spread across its sequence, with the majority

contained in the second half of the sequence (Figure 7b). Due to the large variety of

experiments mutating pykF, the broad distribution of mutations across pykF’s sequence, and the

large amount and variety of structural feature annotations available for PykF, it is expected that

the trends described by the aggregate of all ALE experiment mutations would be most revealing.

Many of the mutations to pykF were predicted to truncate the coding sequence or disrupt the

potential function and/or structural stability of a domain through a non-synonymous amino acid

substitution. Considering the accumulation of truncated amino acids, the PykF subunit interfaces

were the most frequently mutated features on PykF (Figure 7b, Figure 7d, Supplementary

Figure 26). The truncations also seem to cluster on the second half of PykF’s sequence,

resulting in the downstream coding disruptions primarily affecting the PykF tetramer subunit

interfaces while avoiding the active sites in the first half of the sequence (Figure 7b, Figure 7d).

Those mutations predicted not to cause truncations or frameshifts were found on PykF’s 3D

structure nearest to binding sites within the cleft of PykF’s barrel domain (Figure 7c,

Supplementary Figure 27). All mutations to PykF and those specifically from the toxic isobutyric

acid ALEs follow the same trend across features on PykF’s structure (Supplementary Figure

26), providing evidence that mutations to pykF across different sets of conditions may

accomplish similar outcomes. These trends suggest unique functional targets for the different

mutation types, with truncations having the clearest outcome: a disruption to PykF’s ability to

form a complex (Figure 1 workflow step 4).

2.3.2.3 pykF novel variant design
A truncating insertion to amino acid 266 was chosen as the representative ALE mutation to pykF

for the toxic isobutyric acid condition since it represents a clear trend in disrupting the PykF

subunit interfaces and manifested in two independent ALE replicates with this selection pressure

(Figure 1 workflow step 4). The interpretable trend of truncated amino acids accumulating

across PykF subunit interfaces led to a variant design that truncated all of the PykF subunit

interfaces: an insertion of 3 stop codons at amino acid 253, immediately upstream of all the

PykF subunit interfaces (Figure 1 workflow step 5). These ALE mutations and the derived

genome design were initially inspired by their strong selection with the isobutyric acid tolerance

ALEs, though their benefit may instead be directly derived from growth on an abundance of

glucose as a carbon source. All ALEs with mutations to pykF include abundant glucose as a

carbon source (Figure 7a).

2.3.2.4 Experimental validation of pykF novel variant design
Growth screens were performed on the reconstructed strains harboring the pykF ALE mutation

along with the designed truncation to examine the differences in fitness between mutants and

wild-type (Figure 1 workflow step 6). Growth screens for both toxic isobutyric acid levels and

competitive glucose uptake were performed. The results show the mutant and designs have

similar growth rates as well as higher growth rates than wild type with toxic isobutyric acid
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concentrations (Figure 7e) while not demonstrating obvious benefit in competitive glucose

screens (Figure 7f).

3. Discussion
The phenomena of convergent mutations with experimental evolution has served well to reveal

genotypic changes that likely result in a higher level of fitness for the host strain. Experimental

evolution methods such as ALE leverage convergence to hypothesize which mutations bring

about fitness benefits. ALE has been successfully applied in strain engineering, though the

resulting mutation sets can be too small to deduce the functions in which the ALE mutations are

targeting. This work demonstrates how aggregated public ALE mutation data, rich annotations,

and structural biology methods can provide sufficient evidence to interpret ALE mutation

objectives towards strain design.

Multiple methods were implemented to find ALE mutation trends at different levels of

detail. These methods were organized into a workflow so that the sequential execution of steps

leads to the design of sequence variants. Each step of the workflow was critical to deriving

variant designs since individual steps worked to narrow down the ALE mutation targets and

objectives at different levels of detail. Associations between mutated features and conditions

extracted the mutated features potentially relevant for a condition of interest with strain design.

Multi-scale annotations helped group mutated features that belong to the same system,

clarifying whether a beneficial change can be accomplished through few or many mutated

features. A meta-analysis of the new mutational dimensions resulting from these methods offers

insights for variant designs derived from ALE mutational data. The majority of ALE mutations to

non-coding regulatory features resulted in predicted truncations. Biological robustness is

achieved by the regulation and maintenance of a variety of biological functions. Deregulation of

biological functions to remove restrictions on flux or the deactivation of unnecessary functions

may ultimately benefit a host’s performance in highly specific ALE environmental selection

pressures. In essence, the optimization of an organism through ALE may result in a

simplification of its systems towards maximizing the use of a subset of beneficial functions. Most

ALE-data-derived genotypic solutions for a selection pressures may only require a small number

of sequence changes and those sequence changes will most likely be in genes. This was shown

by the small median cluster size of correlated mutant genomic features and the small median

amount of conditions associated with mutated features. Genes were, by far, the most frequently

mutated genomic feature. The bias towards genetic mutations may be due to many factors, one

of which is that the genome of E. coli K-12 MG1655 is mostly composed of coding sequences

(24). Another potential factor is that this study’s ALE selection pressures may only have required

small alterations to functions encoded by genes. Finally, the meta-analysis and case-study

results demonstrated that the same mutated gene or the exact same variant can provide fitness

across a variety of stressors. This result emphasizes the value of aggregated ALE data in that it

enables the identification of broadly applicable variants.
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The case studies in this work demonstrate that enriched ALE data and analysis methods

as organized in the strain design workflow provided enough evidence to deduce the sequence

change properties and resulting molecular mechanisms converged upon by ALE mutations.

From these results, sequence-based variants were derived and revealed insights into

ALE-data-driven strain design. Two different variant design types were derived from two different

mutation trends. The variant designs involving truncations were interpreted from the mutation

trend of accumulating truncated amino acids on functional annotations across a gene’s amino

acid sequence. The variant designs involving non-truncating mutations were interpreted from

the clustering of mutated residues on a gene product’s functionally annotated 3D structure and

residue properties. The variant designs of this work ultimately targeted the reduction of

functionality encoded within a gene. These designs and their original mutations may be trading

the robustness of a system for more simple and higher performing processes. A comprehensive

screen of growth and robustness in multiple conditions would shed light on such tradeoffs, but is

technically challenging to perform given the vast range of potential growth conditions and stress

combinations E. coli is known to have encountered in its evolutionary history.

GlpK’s variant design involved an amino acid substitution that may have increased the

glycerol kinase reaction rate. GlpK (glycerol kinase) is part of the pathway for utilizing glycerol

as a carbon source. GlpK can form a catalytically active homotetramer and homodimer, though

the homotetramer can be allosterically inhibited by fructose-1,6-bisphosphate, a downstream

product serving as negative feedback. Mutations to Serine 59 have already been shown to

disable homotetramer formation through steric incompatibility37. This leaves the homodimer

formation, which may accomplish a higher overall rate of glycerol metabolism due to the lack of

inhibition.

Mutations to cyaA and crr may be maintaining Carbon Catabolite Repression (CCR).

CyaA (adenylate cyclase) is part of the pathway that generates the activated CRP complex

(cAMP-CRP), which goes on to activate genes for multiple secondary carbon source catabolic

systems38. CyaA’s regulatory region is thought to activate the enzyme39. For the condition of

glycerol as a carbon source, CyaA would become activated and produce cAMP, therefore

activating these catabolic systems39. A truncation of cyaA has been shown to prevent cAMP

production40 and the downstream activation of CRP is expected to be nullified. Crr can also play

a role in CCR. Unphosphorylated Crr binds to and inhibits GlpK in vitro38, though in the case of a

glycerol as a carbon source, phosphorylated Crr should be more abundant. Crr interacts with

CyaA and will activate CyaA’s cAMP production if phosphorylated38. Though this work does not

include CyaA interface data for Crr, the phosphoryl group active sites are located in the middle

of the multi-interface residues shared with GlpK; mutations to this interface surface may prevent

the interaction with CyaA that activates cAMP production. The repression of these secondary

carbon source catabolic systems is known as CCR and is normally enforced by the

phosphotransferase system in the presence of glucose38. With glycerol as a carbon source,

ALE-derived strains may have found a way to maintain CCR through mutations to cyaA while

still allowing for the activation of glycerol metabolism. CCR maintenance may ultimately enable a
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more efficient cell metabolism, since it represses the activation of multiple unnecessary

catabolic systems.

As suggested with the glpK and cyaA ALE mutations from the glycerol carbon-source

case study, designs could also result from a combined set of compatible variants, where each

variant optimizes for a separate stress. A strain’s environment is naturally composed of multiple

conditions, therefore compatible optimizations would be valuable in addressing multi-stress

circumstances such as those of industrial scale fermentation (physical, chemical, and

biological)41–43.

The ALE and designed mutant strains of this work were screened for their phenotypes.

The mutant strains were found to be more fit than wild-type in the conditions that initially

selected for their presence in ALEs. The ability of the strains hosting designed variants to

achieve similar growth rates to beneficial ALE mutants demonstrates the possibility to design

variants derived from aggregated ALE data. The similarity between ALE and designed mutant

growth rates also suggests that ALE processes of the current scale and time-span represented

in this work may not find all possible beneficial sequence changes. This lack of full coverage for

beneficial sequence changes by ALE processes may be due to the probability of specific

mutational sequence changes. For example, GlpK’s ALE mutation involved a single base pair

substitution, while both its designed variants involved two base pair substitutions within the

same codon. Designed variant sequence changes may be less likely to occur with ALE. Thus,

there likely exists potential for beneficial variants not revealed through ALE, but can be

understood through utilization of methods outlined in this study such as the mutation clustering

and structural biology approaches.

In the cases involving truncations, ALE mutations and designed strains could produce

more benefit than full gene truncations depending on the stressor. This was demonstrated with

the cyaA mutants, where partial truncations had greater benefit than full truncations with the

Δpgi stressor, though no substantial difference in benefit was observed between partial and full

truncations of cyaA with glycerol as a carbon source. The designs and mutations to pykF also

involved truncations. Full truncations of pykF are thought to be valuable with scarce glucose44,

where partial truncations may be more valuable in abundant glucose34. All of this study’s pykF

mutations manifested in strains using glucose as a carbon source (Figure 7a) and the majority

of the truncations occurred near the middle of the coding sequence, where truncations mostly

avoided catalytic sites encoded in the first half of the gene (Figure 7b, Figure 7d). The results

from the phenotypic screens demonstrated otherwise: no obvious benefit was gained from pykF

mutants in competitive glucose growth screens (Figure 7f). There may exist conditions in which

a partial truncation to pykF is more beneficial than a full truncation, though these conditions are

currently unclear with this study’s analysis.

The methods in this work demonstrate the value in leveraging diverse public resources to

describe ALE variants, but are not without limitations. The success of adequately characterizing

the beneficial mechanisms of mutations relies upon the availability of genome annotations local

to the mutations of interest as well as tools that can describe the nature and magnitude of a
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mutation’s severity. The efforts of this work leveraged an already available whole-genome

multi-scale annotation framework and further enriched mutation annotations local to features

genes of interest. These additional annotations, coming from resources such as Uniprot45,

EcoCyc46, Pfam47, and Mutfunc48, are available for the whole genome, though efforts have not

yet been made to consolidate them into a unified computational resource. Additionally, specific

mutation characterization greatly benefitted from investigating the other mutations local to a

feature of interest. Variants can therefore serve as an additional genome annotations, and are

especially useful if described by the conditions they were found in. There also exists the

potential to grow this set of consolidated mutations with those from other studies and with

natural variants. Traditional genome annotations typically don’t include variants, though recent

efforts have developed a bioinformatic resource that combines genome annotations as well as

variants: the Bitome49. The Bitome could serve as the locus for consolidating whole-genome

multi-scale feature annotations along with variants and their metadata for a comprehensive,

high-resolution, genomic resource per organism.

4. Conclusion
This work demonstrates how to design strains from aggregated ALE mutational data.

Meta-analysis methods involving nucleotide-level mutation data, rich functional annotations, and

predicted mutation effects were used to anticipate the general characteristics of ALE-data-driven

strain designs. These predictions described condition-specific designs involving only a small

number sequence changes that primarily target genes with both truncating and non-truncating

effects. A workflow was developed that executes the meta-analysis and structural biology

methods in an order that derives specific nucleotide-level sequence variants applicable to

specific conditions from the broader aggregated ALE dataset. Two case-studies were included

to serve as proof-of-concept for ALE-data-driven strain designs and may hold value for

applications in microbial cell factories and beyond. The case-studies demonstrated beneficial

designs based on point mutations and partial-truncations, where mutation functional targets

were highlighted by either the accumulation of truncated codons on the gene sequence or point

mutation clustering on the 3D structure. In the case with point mutations, the predicted effects of

mutations on gene-product properties were necessary to elucidate ALE mutation objectives.

Designs were also shown to be beneficial for multiple stressors and there exists mutational

evidence that designs can be combined in the same strain. Finally, depending on the stressor,

partial truncations were shown to be more beneficial than full gene knockouts. Together, these

results demonstrate how aggregated public ALE data and data-driven strain design methods

can reveal nucleotide-level design variables currently inaccessible to rational design methods.

Until rational methods can predict all possible biological paths between genotypes and

phenotypes, data-driven methods will continue to provide value towards strain design.
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Methods

Biological material
All mutants used the base strain of E. coli K-12 MG1655 (ATCC 47076). Mutant strains were

generated following a CRISPR/Cas9-assisted protocol outlined by Zhao et al.50 (Supplementary

Table 10). This method relies on Cas9 to cut the genome of the starting strain while leaving

intact the successfully mutated genome. A single plasmid encoding the CRISPR/Cas9 and

Lambda Red Recombinase systems along with repair arms and a 20 nt guide RNA targeting the

starting strain sequence was constructed using Golden Gate Assembly. In this case the repair

arms were generated using PCR instead of annealing two oligos. Depending on the target

mutation, one of two strategies for the placement of the 20 nucleotide guide RNA were used: 1)

spanning the bases targeted for mutation if that region was next to a PAM sequence or 2) close

to the region being mutated and next to a PAM sequence that could be eliminated by introducing

a synonymous codon with the repair arms. When option 2 was used to introduce a single

nucleotide change, one of the 20 bases of the guide RNA unrelated to that position was

deliberately changed so that the successfully mutated strain would have two mismatched bases

with respect to the guide RNA while the starting strain would have just one mismatch. Colonies

were screened using ARMS PCR in which one of the primers was designed to work on the

starting strain and not on the mutated sequence. All mutations were verified by Sanger

sequencing an amplicon generated with primers targeting the genome distal to the ends of the

repair arms to avoid sequencing the plasmid. Finally the plasmid was eliminated by growth at

37°C, verified by parallel plating on media with and without Kanamycin.

Each chromosomal cyaA, pgi and pykF deletion was introduced using a

temperature-sensitive pGE3 carrying λ-recombinases and MAD7 nuclease (MADzymeTM) which

sequence obtained from Inscripta Inc. Briefly, E. coli MG1655 was transformed with a

temperature-sensitive pGE3 (Supplementary Table 8, Supplementary Table 9), modified from

pMP11 by replacing Cas9 into MAD751. Lambda recombinases were induced with 0.2%

arabinose at 37℃ for 45 min. Then, induced cells were transformed with 200 ng gRNA plasmid

together with 100 pmol synthetic oligo containing each flanking 45 bp homologous sequence for

each gene. Upon transformation, cells were recovered at 30℃ for 1 hr 30 min. Then, the cells

were transferred to 2 ml of LB containing ampicillin and chloramphenicol and grew overnight at

30℃. Knockout transformants were isolated by plating and validated by colony PCR and Sanger

sequencing. Loss of guide RNA plasmid was done by growing confirmed isolates in LB

containing ampicillin and 200 μg/L of anhydrotetracycline at 30℃ for at least 6 hours. Loss of

pGE3 was achieved by propagating at 37℃. Loss of both plasmids was validated by checking

the cell's sensitivity to antibiotics. cyaA knockout was performed on Δpgi strain for construction

of pgi and cyaA double knockout strain.
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Physiological characterizations
The growth rates of strain clones were screened by inoculating cells from an overnight culture to

a low OD and then sampling the OD600 until the stationary phase was reached. A linear

regression of the log-linear region was computed using the linregress function from the

scipy.stats Python package and the growth rates were determined from the resulting slopes.

Screen condition details are given in Supplementary Table 7.

Residue properties
Residue properties were acquired from the software package ssbio 52.

SIFT and ΔΔG scores for the mutation effect prediction of amino acid substitutions

In the case studies, two more effect types were predicted for mutations: deleterious and

structural destabilization. Both of these were specific to coding regions. Deleterious effects were

assumed according to significant SIFT scores (SIFT score < 0.05)53. Structural destabilization

was assumed according to predicted significant ΔΔG scores (ΔΔG > 2)54. SIFT and ΔΔG scores

were acquired from Mutfunc48.

Gene product feature annotations
GlpK features were acquired from Uniprot45, EcoCyc46, Pfam47, Mutfunc48 and individual

publications55.

Gene product structures and distances between mutated residues and features
Distances between mutated residues and the residues of functional features were calculated

using gene product 3D structures and the Cartesian distance formula. GlpK was represented by

the 3EZW PDB model. Structures for Crr, CyaA, and PykF were obtained from those provided

with the iML1515 model of E. coli K-12 MG1655 36.

Software scripts
The software scripts supporting the conclusions of this article are available in the following

open-access archive repository: https://doi.org/10.5281/zenodo.5108959

Availability of data and materials
The datasets supporting the conclusions of this article are available in the following open-access

archive repository: https://doi.org/10.5281/zenodo.5108959 These datasets are also available in

the ALEdb database22.

Mutation data cleaning
The mutations from ALEdb are initially described relative to the sample and the genome

reference. Since some of these experiments include midpoint samples, mutations that emerge
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within a midpoint sample and carried through to an endpoint sample can get counted more than

once per ALE, which would result in an inappropriately inflated mutation count. Unique ALE

mutations were therefore only considered once per ALE. Starting strain mutations were filtered

out of the ALE experiment mutation datasets according to their publications after being exported

from ALEdb. ALE replicates containing hypermutators were also removed from the dataset. An

ALE replicate was predicted to host a hypermutator strain if two conditions were met: 1) a

hypermutator gene56 was mutated within the ALE replicate, and 2) the number of mutations

found within the ALE replicate was labelled as an outlier relative to boxplot quartiles when

considering the distribution of mutation counts for all ALE replicates used in this study. Mutations

in population samples with a frequency below 50% were filtered out to instead focus on

mutations that demonstrate dominant selection within a sample. In calculating correlations

between mutated genomic features and generating the network diagrams of multi-scaled

mutated features, large deletions were removed to filter out large sets of mutated features that

were only mutated once.

Quantitative plots
Unless otherwise stated, figure plots were generated using Matplotlib version 3.0.357 and

Seaborn version 0.1158 or Plotly59 Python software packages.

Network diagrams
The network diagrams of multiscale mutated features were generated using Cytoscape.js60.

Mutation Needle Plots
The mutation needle plots were generated using the trackViewer R software package61.

Oncoplots
The oncoplots were generated using the ComplexHeatmap R software package62.

3D protein structures
The visualizations for the 3D protein structures were generated using the NGL software

package63.
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ALE: adaptive laboratory evolution

SNP: single nucleotide polymorphism

DEL: deletion

MOB: mobile insertion elements

INS: insertion

SUB: substitution
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AMP: amplification

TFBS: transcription factor binding site

RBS: ribosomal binding site

SV: structural variant

SIFT: Sorting Intolerant from Tolerant

PykF: Pyruvate kinase I

GlpK: glycerol kinase

CyaA: Adenylate cyclase

Crr: PTS system glucose-specific EIIA component

PTS: phosphotransferase system

EIIA: Enzyme II A

CCR: carbon catabolite repression

cAMP-CRP: activated CRP complex

CRP: cAMP receptor protein

cAMP: cyclic AMP

ΔΔG: The predicted difference between the free energy of unfolding the protein structure before

and after the variant.
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